اثر بیوچار و کود فسفر بر ماده خشک و جذب کلسیم، منیزیم، آهن، روی، مس و منگنز به‌وسیله گیاه کلزا در یک خاک آهکی

نویسندگان

گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

چکیده

این پژوهش با هدف بررسی تأثیر برهمکنش‍ فسفر و بیوچار حاصل از کاه ‌گندم پیرولیز شده در دمای 300 درجه سلسیوس بر رشد و جذب کلسیم، منیزیم و برخی عناصر غذایی کم‌مصرف به‌وسیله گیاه کلزا‌ (Brassica napus L.) رقم هایولا 308 در یک خاک قلیایی با بافت لوم در شرایط گلخانه‌ای‍ انجام شد. این آزمایش به‌صورت فاکتوریل و در قالب طرح کاملاً تصادفی با سه تکرار اجرا گردید. فاکتورهای آزمایش شامل ماده‌ آلی ‍در پنج سطح ‍(‍بدون مصرف ماده آلی، 20 و 40 گرم بر کیلوگرم خاک از دو منبع کاه گندم و بیوچار حاصل از آن)‍ و فسفر در سه سطح (‍صفر، 20 و 40 میلی‌‍گرم فسفر بر ‍کیلوگرم خاک از منبع سوپرفسفات ‍تریپل‍‍) بودند. بعد از برداشت گیاه ماده خشک شاخساره و غلظت و مقدار کلسیم، منیزیم، آهن، روی، مس و منگنز در شاخساره کلزا اندازه‌گیری شدند. نتایج نشان داد که کاربرد کاه گندم وزن خشک شاخساره کلزا را به‌طور معناداری نسبت به شاهد کاهش داد اما در هر دو سطح کاه گندم (2 و 4 درصد) مصرف کود فسفر نسبت به تیمار بدون فسفر، وزن خشک شاخساره را افزایش داد. این یافته نشان دهنده غیرمتحرک شدن احتمالی فسفر بر اثر مصرف کاه گندم و اثر مثبت کود فسفر در این شرایط بود. در شرایط این پژوهش، بیوچار مصرفی در هر دو سطح 2 و 4 درصد باعث افزایش ماده خشک شاخساره کلزا به‌ترتیب به میزان 46 و 57 درصد نسبت به شاهد شد. مصرف توأم کاه و فسفر مقدار جذب کلسیم، منیزیم، آهن و مس را در هر دو سطح 2 و 4 درصد بیوچار نسبت به شاهد کاهش داد؛ اما مقدار جذب روی و منگنز را در سطح 2 درصد بیوچار افزایش ولی در سطح 4 درصد آن کاهش داد. با توجه به نتایج به‌دست آمده از این تحقیق استفاده از بیوچار حاصل از کاه گندم تولید شده در دمای 300 درجه سلسیوس جذب آهن‌، روی و منگنز را افزایش داد که سبب بهبود خصوصیات رشد گیاه کلزا گردید.

کلیدواژه‌ها


Alburquerque, J.A., Salazar. P., Barrón, V., Torrent, J., Campillo, M.d.C., Gallardo, A. & Villar, R. (2013). Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agronomy for Sustainable Development, 33(3), 475–484.
Amin, E.A.Z. (2018). Phosphorus dynamics and corn growth under applications of corn stalks biochar in a clay soil. Arabian Journal of Geosciences, 11(14), 379–396
Antón‐Herrero, R., Vega‐Jara, L., García‐Delgado, C., Mayans, B., Camacho‐Arévalo, R., Moreno‐Jiménez, E., and Eymar, E. (2022). Synergistic effects of biochar and biostimulants on nutrient and toxic element uptake by pepper in contaminated soils. Journal of the Science of Food and Agriculture, 102, 167–174. 
Azimzadeh, Y., Najafi, N., Reyhanitabar, A., Oustan, S. & Khataee, A. (2020). Effects of phosphate loaded LDH-biochar/hydrochar on maize dry matter and P uptake in a calcareous soil. Archives of Agronomy and Soil Science, 67(12), 1649–1664.
 
Beesley, L., & Dickinson, N. (2011). Carbon and trace element fluxes in the pore water of an urban soil following greenwaste compost, woody and biochar amendments, inoculated with the earthworm (Lumbricus terrestris). Soil Biology and Biochemistry, 43, 188–196.
 Carter, S., Shackley, S., Sohi, S., Suy, T.B. & Haefele, S. (2013). The impact of biochar application on soil properties and plant growth of pot grown lettuce (Lactuca sativa) and cabbage (Brassica chinensis). Agronomy, 3, 404–418.
Crowly, D.E., Romheld, V., Marschner, H. & Szaniszli, P.J. (1992). Root microbial effects on plant iron uptake from sidrophores and phito sidrophores. Plant and Soil, 142, 1–7.
Dong, X., Ma, L.Q. & Li. Y. (2011). Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials, 190, 909–915.
Duku, M.H., Gu, S. & Hagan, E.B. (2011). Biochar production potential in Ghana- a review. Renewable and Sustainable Energy Reviews, 15, 3539–3551.
Frišták, V. & Soja, G. ( 2015). Effect of wood-based biochar and sewage sludge amendments for soil phosphorus availability. Nova Biotechnologica Et Chimica, 14, 104–115.
Gee, G.W., Or, D. )2002(. Particle size analysis. Pp. 255–293. In: Dane, J.H., Topp, G.C. (Eds.), Methods of soil analysis. Part 4. Physical methods. Soils Science Society of America, Book Series No. 5, Madison, WI., USA.
Ghadam Kheir, E., Nadian, H. & Jafari, S. (2017). The effect of biochar and vermicompost on concentration of some micronutrients in canola under salinity stress. Pp.1–6. In: 15th Iranian Soil Science Congress,28 -30August. 2017, Isfahan-Iran (In Persian with English abstract).
Havlin, J.L., Beaton, J.D., Tisdale, S.L & Nelson, W.L. (2016). Soil fertility and fertilizers. Sixth Edition,  Academic Press, Soil Science Society of America. Madison, WI., USA.
Hoseini, Y., Homaee, M., Karimian, N.A & Saadat, S. (2009). The effects of phosphorus and salinity on growth, nutrient concentrations, and water use efficiency in canola (Brassica napus L.). Journal of Agricultural Research 8, 1–18. (In Persian with English abstract).
Jones, J.R. (2001). Laboratory guide for conducting soil tests and plant analysis. CRC Press, Boca Raton, FL., USA.
Karimi, E., Shirmardi, M., Dehestani Ardakani, M., Gholamnezhad, J. & Zarebanadkouki, M. (2020). The effect of humic acid and biochar on growth and nutrients uptake of calendula (Calendula officinalis L.). Communications in Soil Science and Plant Analysis, 51, 1658–1669.‏
Khanmohammadi, Z., Afyuni, M. & Mosaddeghi, M.R. (2017). Effect of sewage sludge and its biochar on chemical properties of two calcareous soils and maize shoot yield. Archives of Agronomy and Soil Science, 63, 198–212.
Kuppusamy, S., Thavamani, P., Megharaj, M., Venkateswarlu, K. & Naidu, R. (2016). Agronomic and remedial benefits and risks of applying biochar to soil: current knowledge and future research directions. Environment International, 87, 1–12.
Lehmann, J. & Joseph S. (2015). Biochar for Environmental Management: Science, Technology and Implementation. Second  Edition, Academic Press, London, UK.  
Lehmann, J., Kem, D., German, L., McCann, J., Martis, G.C. & Moreira, L. (2003). Soil fertility and production potential. Chapter 6. Pp. 105–124. In: Lehmann J, Kern DC, Glaser B, W. I. Woods (Eds). Amazonian dark earths: origin, properties, management. Kluwer Academic, Dordrecht, the Netherlands.
Lindsay, W.L. & Norvell, W.A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42, 421–428.
Lindsay, W.L., Vlek, P.L. & Chien, S.H. (1989). Phosphate Minerals. Pp. 1089–1130. In:  Dixeon, J.B. &Weed SB (Eds). Minerals in soil environments. Secondth Edition. SSSA Book Series No. 1, Madison, WI. USA.
Maghsoodi, M.R., Najafi, N., Reyhanitabar, A. & Oustan, S. (2024). Effects of biochar, hydrochar, zeolite, and hydroxyapatite nanorods as urea carriers on some agronomical traits and water use efficiency of rice plant. Journal of Soil Science and Plant Nutrition, https://doi.org/10.1007/s42729-024-02143-8
Marschner, P. (2012). Marschner’s mineral nutrition of higher plants. Second Edition, Academic Press, London, UK.
Mbah, C., Njoku, C., Okolo, C., Attoe, E. & Osakwe, U. (2017). Amelioration of a degraded ultisol with hardwood biochar: effects on soil physico-chemical properties and yield of cucumber (Cucumis sativus L.). African Journal of Agricultural Research, 12, 1781–1792.
Molla, M.S., Akhter, M., Maniruzzaman, M., Lipi, N.J., Rabiul, A. & Tisam, A. (2017). Response of biochar to plant nutrients and yield of Amaranthus tricolor. International Journal of Innovative Research, 2, 13–17.
Moreno-Jiménez, E., Fernández, J.M., Puschenreiter, M., Williams, P.N. & Plaza, C. ( 2016). Availability and transfer to grain of As, Cd, Cu, Ni, Pb and Zn in a barley agri-system: Impact of biochar, organic and mineral fertilizers. Agriculture, Ecosystems and Environment, 219, 171–178.
Nelson, D.W. & Sommers, L.E. (1996). Total carbon, organic carbon, and organic matter. Pp. 961–1010. In: Methods of soil analysis. Sparks, D.L, et al. (EDs) Part 3. Chemical methods. Soil Science Society of America, American Society of Agronomy, Madison, WI., USA.
Olsen, S.R. & Sommer, L.E. (1982). Phosphorus. Pp. 403–430. In: Page, A.L, Miller, R.H and Keeney, D.R. (Eds). Methods of soil analysis: Part 2. Chemical and Microbiological Properties. SSSA, Madison, WI., USA.
Ouda, B.A. & Mahadeen, A.Y. (2008). Effect of fertilizers on growth, yield, yield components, quality and certain nutrient contents in broccoli (Brassica oleracea). International Journal of Agriculture and Biology ,10, 627–32.
Park, J.H., Choppala, G.K., Bolan, N.S, Chung, J.W & Chuasavathi, T., 2011. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348, 439–451
Price, G., 2006. Australian soil fertility manual. Third Edition, Fertilizer Industry Federation of Australia Inc. and CSIRO Publishing, Collingwood, Victoria, Australia.
Puga, A., Abreu, C., Melo, L. & Beesley, L. (2015). Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. Journal of Environmental Management ,159, 86–93.
Reyhanitabar, A., Frahadi, E., Ramezanzadeh, H. & Oustan, S. (2020). Effect of pyrolysis temperature and feedstock sources on physicochemical characteristics of biochar. Journal of Agricultural Science and Technology, 22, 547–561
Rhoades, J. (1996). Salinity: electrical conductivity and total dissolved solids. Pp. 417–435. In: Sparks, D.L et al. (Eds.). Methods of soil analysis, Part 3. Chemical methods. SSSA, Madison, WI., USA.  
Shahbazi, K. & Besharati, H.( 2013). Overview of agricultural soil fertility status of Iran. Journal of Land Management, 1, 1–15. (In Persian with English abstract).
Singh, B., Camps-Arbestain, M. & Lehmann, J.( 2017). Biochar: A guide to analytical methods. First Edition, Academic Press, CSIRO Publishing.
Song, W. & Guo, M. (2012). Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94, 138–145.
Sousa, A., & Figueiredo, C., (2016). Sewage sludge biochar: effects on soil fertility and growth of radish. Biological Agriculture and Horticulture, 32, 127–138.
Sposito, G., Lund, L.J, & Chang, A.C. (1982). Trace metal chemistry in arid zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd and Pb in soil phases. Soil Science Society of America Journal, 46, 260–264.
Tavajjoh, M., Karimian, N.A., Ronaghi, A., Yasrebi, J., Hamidi, R., & Olama, V. (2016). Yield, yield components and seed quality of two rapeseed cultivars as affected by different levels of phosphorus and boron under greenhouse conditions. Journal of Science and Technology of Greenhouse Culture, 6, 99–113. (In Persian with English abstract).
Thomas,  G.W. (1996). Soil pH and soil acidity. pp. 475-490. In: Sparks, D.L et al., (Eds). Methods of soil analysis. Part 3. Chemical methods. Soil Science Society of America, American Society of Agronomy, Madison, WI., USA..
Vahedi, R., Rasouli-Sadaghiani, M.H., Barin, M. & Vetukuri, R.R. (2022). Effect of biochar and microbial inoculation on P, Fe, and Zn bioavailability in a calcareous soil. Processes, 10, 343–357‏
Wang, T., Camps-Arbestain, M., Hedley, M. & Bishop, P. (2012). Predicting phosphorus bioavailability from high-ash biochars. Plant and Soil, 357, 173–187.
Xu, X., Cao, X. & Zhao, L. (2013). Comparison of rice husk-and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars. Chemosphere, 92(8), 955–961.
Zemanová, V., Břendová, K., Pavlíková, D., Kubátová, P. & Tlustoš, P. ( 2017). Effect of biochar application on the content of nutrients (Ca, Fe, K, Mg, Na, P) and amino acids in subsequently growing spinach and mustard. Plant, Soil and Environment, 7, 322–327.
 Zolfi Bavariani, M., Ronaghi, A., Karimian, N., Yasrebi, J. & Ghasemi, R. ( 2017). Influence of biochars prepared from poultry manure on phosphorus availability and recovery in a calcareous soil. Journal of Water and Soil Science,  21, 23–35. (In Persian with English abstract).