Aboyeji, C. M., Dunsin, O., Adekiya, A. O., Suleiman, K. O., Chinedum, C., Okunlola, F. O., & Owolabi, I. O. (2020). Synergistic and antagonistic effects of soil applied P and Zn fertilizers on the performance, minerals and heavy metal composition of groundnut. Open Agriculture, 5(1), 1–9.
Akhtar, M., Yaqub, M., Naeem, A., Ashraf, M., & Hernandez, V. E. (2016). Improving phosphorus uptake and wheat productivity by phosphoric acid application in alkaline calcareous soils. Journal of the Science of Food and Agriculture, 96(11), 3701–3707.
Akpinar-Bayizit, A., Ozcan, T., Yilmaz-Ersan, L., & Yildiz, E. (2016). Evaluation of antioxidant activity of pomegranate molasses by 2, 2-Diphenyl-l-Picrylhydrazyl (DPPH) method. International Journal of Chemical Engineering and Applications, 7(1), 71-74.
http:// 10.7763/IJCEA.2016.V7.545.
Alejandro, S., Cailliatte, R., Alcon, C., Dirick, L., Domergue, F., Correia, D., & Curie, C. (2017). Intracellular distribution of manganese by the trans-Golgi network transporter NRAMP2 is critical for photosynthesis and cellular redox homeostasis. The Plant Cell, 29(12), 3068–3084.
Ameen, M., Akhtar, J., Sabir, M., & Ahmad, R. (2019). Effect of phosphoric acid and potassium humate on growth and yield of maize in saline-sodic soil. Pakistan Journal of Agricultural Sciences, 56(4), 897–904.
http://dx.doi.org/10.21162/PAKJAS/19.8151
Arnon, A. N. 1967. Method of extraction of chlorophyll in the plants. Agronomy Journal, 23:112-121.
Azimzadeh, Y., Najafi, N., Reyhanitabar, A., Oustan, S., & Khataee, A. (2020). Effects of phosphate loaded LDH-biochar/hydrochar on maize dry matter and P uptake in a calcareous soil. Archives of Agronomy and Soil Science, 67(12), 1649–1664.
Bayat, M., Hassani, A. & Nourzadeh Hadad, M. (2025). Improving the characteristics of tomato seedlings by integrated application of humic acid, auxin, and phosphoric acid. Journal of Soil and Plant Science, 35(1), 51–65.
Bader, B. R., Taban, S. K., Fahmi, A. H., Abood, M. A., & Hamdi, G. J. (2021). Potassium availability in soil amended with organic matter and phosphorous fertiliser under water stress during maize (Zea mays L.) growth. Journal of the Saudi Society of Agricultural Sciences, 20(6), 390-394.
Bertrand, I., McLaughlin, M. J., Holloway, R. E., Armstrong, R. D., & McBeath, T. (2006). Changes in P bioavailability induced by the application of liquid and powder sources of P, N and Zn fertilizers in alkaline soils. Nutrient Cycling in Agroecosystems, 74(1), 27–40.
Bolan, N., Srivastava, P., Rao, C. S., Satyanaraya, P. V., Anderson, G. C., Bolan, S., ... & Kirkham, M. B. (2023). Distribution, characteristics and management of calcareous soils. Advances in Agronomy, 181, 81–130.
Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analyses of soils. Agronomy Journal, 54(5), 464–465.
Bremner, J. M. (1996). Nitrogen-total. Pp. 1085–1121. In: D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, G. T. Johnston, & M. E. Sumner (Eds.), Methods of soil analysis: Part 3—Chemical methods. Soil Science Society of America, American Society of Agronomy, WI, USA.
Brownrigg, S., McLaughlin, M. J., McBeath, T., & Vadakattu, G. (2022). Effect of acidifying amendments on P availability in calcareous soils. Nutrient Cycling in Agroecosystems, 124(2), 247–262.
Chakraborty, D., & Prasad, R. (2019). Phosphorus basics: Deficiency symptoms, sufficiency ranges, and common sources. Crop Production, 1, 1–4.
Davies, S., & Lacey, A. (2011). Subsurface compaction: A guide for WA farmers and consultants. Bulletin 4818. Department of Primary Industries and Regional Development, Western Australia.
Ehiagiator, J. O., Ariyo, A. D., & Imasuen, E. E. (2011). Soil fertility and nutritional studies on citrus, fruit and vegetable crops in Nigeria. Pp. 24–29. In: Proceedings of the 29th Annual National Conference of Horticultural Society of Nigeria, Kano, Nigeria.
Etemadian, M., Hassani, A., Nourzadeh Haddad, M., & Hanifei, M. (2018). Effect of organic and inorganic acids on the release of nutrients in calcareous soils. Journal of Water and Soil Conservation, 24(5), 73–91. (In Persian with English abstract).
Hashmi, Z. U. H., Khan, M. J., Akhtar, M., Sarwar, T., & Khan, M. J. (2017). Enhancing phosphorus uptake and yield of wheat with phosphoric acid application in calcareous soil. Journal of the Science of Food and Agriculture, 97(6), 1733–1739.
Hebbern, C. A., Pedas, P., Schjoerring, J. K., Knudsen, L., & Husted, S. (2005). Genotypic differences in manganese efficiency: Field experiments with winter barley (Hordeum vulgare L.). Plant and Soil, 272(1), 233–244.
Hedley, M., & McLaughlin, M. (2005). Reactions of phosphate fertilizers and by-products in soils. In Phosphorus: Agriculture and the environment (pp. 181–252). American Society of Agronomy.
Hopkins, B. G., & Ellsworth, J. W. (2005). Phosphorus management in high-yield systems. Pp. 88–94. In: Western Nutrient Management Conference. Salt Lake City, UT, USA.
Huang, P. T., Patel, M., Santagata, M. C., & Bobet, A. (2009). Classification of organic soils.
Hussain, F., Akhtar, M., Ashraf, M. Y., Qureshi, T. M., Anwar-ul-Haq, M., & Naeem, A. (2011). Evaluation of phosphoric acid as a phosphate fertilizer for wheat production on salt-affected soils. Agrochimica, 55(4), 203–211.
Jiaying, M. A., Tingting, C., Jie, L., Weimeng, F., Baohua, F., Guangyan, L., and Guanfu, F. (2022). Functions of nitrogen, phosphorus and potassium in energy status and their influences on rice growth and development. Rice Science, 29(2), 166-178.
Leifheit, E. F., Kissener, H. L., Faltin, E., Ryo, M., & Rillig, M. C. (2022). Tire abrasion particles negatively affect plant growth even at low concentrations and alter soil biogeochemical cycling. Soil Ecology Letters, 4(4), 409–415.
Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal, 42(3), 421–428.
Loeppert, R. H., & Suarez, D. L. (1996). Carbonate and gypsum. Pp. 437–474. In: D. L. Sparks (Ed.), Methods of soil analysis: Part 3—Chemical methods. Soil Science Society of America, WI, USA..
Lombi, E., McLaughlin, M. J., Johnston, C., Armstrong, R. D., & Holloway, R. E. (2004). Mobility and lability of phosphorus from granular and fluid monoammonium phosphate differs in a calcareous soil. Soil Science Society of America Journal, 68(2), 682–689.
Luo, T., Lu, W., Chen, L., Min, T., Ru, S., Wei, C., & Li, J. (2022). The effects of acidic compost tea on activation of phosphorus, Fe, Zn, and Mn in calcareous soil and cotton (Gossypium hirsutum L.) growth in Xinjiang, China. Journal of Soil Science and Plant Nutrition, 22(3), 3822–3834.
Maathuis, F. J., and Sanders, D. (1996). Mechanisms of potassium absorption by higher plant roots. Physiologia Plantarum, 96(1), 158-168.
https://doi.org/10.1111/j.1399-3054.1996.tb00197.x
Markarian, S., Najafi, N., Aliasgharzad, N., & Oustan, S. (2016). Interactive effects of Ensifer meliloti (Sinorhizobium meliloti) and phosphorus on some growth characteristics of alfalfa under soil water deficit conditions. Journal of Soil Biology, 3(2), 163–178. (in Persian with English abstract)
https://dor.isc.ac/dor/20.1001.1.23452536.1394.3.2.7.9
Marschner, H., & Römheld, V. (1995). Strategies of plants for acquisition of iron. Plant and Soil, 165(2), 261–274.
Maslova, T. G., Markovskaya, E. F., & Slemnev, N. N. (2021). Functions of carotenoids in leaves of higher plants. Biology Bulletin Reviews, 11(5), 476–487.
McBeath, T. M., McLaughlin, M. J., Armstrong, R. D., Bell, M., Bolland, M. D. A., Conyers, M. K., Holloway, R. E., & Mason, S. D. (2007). Predicting the response of wheat (Triticum aestivum L.) to liquid and granular phosphorus fertilisers in Australian soils. Soil Research, 45(6), 448–458.
Mohamed, M. H. M. (2021). Implications of applied P-sources with calcium super phosphate, phosphoric acid and rock phosphate, and phosphate dissolving bacteria on snap bean grown under greenhouses conditions. Annals of Agricultural Science, Moshtohor, 59(5), 697–710.
Motalebifard R., Najafi N., Oustan S., Nyshabouri M.R., & Valizadeh M. (2014). Effects of soil moisture, phosphorus and zinc levels on the growth attributes of potato in greenhouse conditions. Iranian Journal of Soil and Water Research, 45(1), 75–86. (in Persian with English abstract)
https://doi.org/10.22059/ijswr.2014.51173
Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. Pp. 403–430. In: A. L. Page (Ed.), Methods of soil analysis: Part 2—Chemical and microbiological properties. SSSA, American Society of Agronomy, WI, USA.
Paul, V., Singh, A., & Pandey, R. (2010). Estimation of total soluble solids (TSS). Laboratory Manual on Post-Harvest Physiology of Fruits and Flowers, 41-43.
Penn, C. J., & Camberato, J. J. (2019). A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture, 9(6), 120.
Pratt, P. F., & Chapman, H. D. (1961). Gains and losses of mineral elements in an irrigated soil during a 20-year lysimeter investigation. Soil Science Society of America Journal, 25(3), 194–198.
Rengrudkij, P., & Partida, G. J. (2003). The effects of humic acid and phosphoric acid on grafted Hass avocado on Mexican seedling rootstocks. In Proceedings of the World Avocado Congress (pp. 395–400).
Rhoades, J. D., Manteghi, N. A., Shouse, P. J., & Alves, W. J. (1989). Estimating soil salinity from saturated soil-paste electrical conductivity. Soil Science Society of America Journal, 53(2), 428–433.
Saleem, S., Mushtaq, N. U., Rasool, A., Shah, W. H., Tahir, I., & Rehman, R. U. (2023). Plant nutrition and soil fertility: Physiological and molecular avenues for crop improvement. Pp. 23–49. In: Sustainable plant nutrition. Academic Press.
Salimi Trazoj, S., Reyhanitabar, A. & Najafi, N. (2024). Effects of biochar and phosphorus on dry matter and uptake of calcium, magnesium, iron, zinc, copper, and manganese by rapeseed in a calcareous soil. Journal of Soil and Plant Science, 34(4), 91–113.
Shafighi, R., Pourmohammad, A. & Aslani, I. (2025). Agronomic and yield responses of some dryland wheat cultivars to chemical fertilizers of urea and triple superphosphate in Hashtrud region. Journal of Soil and Plant Science, 35(1), 67–84 .
Srinivasarao, C., Vittal, K. P. R., Chary, G. R., Gajbhiye, P. N., & Venkateswarlu, B. (2006). Characterization of available major nutrients in dominant soils of rainfed crop production systems of India. Indian Journal of Dryland Agricultural Research and Development, 21(2), 105–113.
Tang, X., Ma, Y., Hao, X., Li, X., Li, J., Huang, S., & Yang, X. (2009). Determining critical values of soil Olsen-P for maize and winter wheat from long-term experiments in China. Plant and Soil, 323(1), 143–151.
Thomas, G. W. (1982). Exchangeable cations. Pp. 159–165. In: A. L. Page (Ed.), Methods of soil analysis: Part 2—Chemical and microbiological properties. SSSA, American Society of Agronomy, WI, USA.
Thomas, G. W. (1996). Soil pH and soil acidity. Pp. 475–490. In: D. L. Sparks (Ed.), Methods of soil analysis: Part 3—Chemical methods. Soil Science Society of America, WI, USA.
Wahba, M., Fawkia, L., & Zaghloul, A. (2019). Management of calcareous soils in arid region. International Journal of Environmental Pollution and Environmental Modelling, 2(5), 248–258.
Wahid, F., Fahad, S., Danish, S., Adnan, M., Yue, Z., Saud, S., Siddiqui, M. H., Brtnicky, M., Hammerschmiedt, T., & Datta, R. (2020). Sustainable management with mycorrhizae and phosphate solubilizing bacteria for enhanced phosphorus uptake in calcareous soils. Agriculture, 10(8), 334.
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38.
Yazdani Motlag N., Reyhanitabar A., Najafi N., & Bandehag A. (2014). Effects of combined application of nitrogen and phosphorus on the growth characteristics of rice plants under flooded and periodic saturation conditions. Journal of Water and Soil Science, 24(3), 145–160. (in Persian with English abstract)
Yusuf, S., Audu, A. A., & Wazir, M. (2017). Comparative assessment of the environmental dynamics of dissolved organic nitrogen (DON) and dissolved organic phosphorus (DOP) from three wetlands in Northern Nigeria. Nigerian Journal of Basic and Applied Sciences, 25(2), 151–162.
Zahra, Z., Maqbool, T., Arshad, M., Badshah, M. A., Choi, H. K., & Hur, J. (2019). Changes in fluorescent dissolved organic matter and their association with phytoavailable phosphorus in soil amended with TiO2 nanoparticles. Chemosphere, 227, 17–25.