Aliasgharzad, N. (2005). Methods in Soil Biology (Translation). Published by University of Tabriz, Tabriz, Iran. (In Persian)
Afsharnia, M., Sarikhani, M. R., & Zarei, M. (2022). Isolation of oil degrading bacteria from oil contaminated soil around the oil refinery and petrochemical plants of Tabriz and identification of the efficient bacteria. Water and Soil Science, 32(4), 91-104. (In Persian with English abstract).
Agamuthu, P., Tan, Y. S., & Fauziah, S. H. (2013). Bioremediation of hydrocarbon contaminated soil using selected organic wastes. Procedia Environmental Sciences, 18, 694-702.
Anderson, J. P. (1982). Soil respiration. Methods of Soil Analysis: part 2 Chemical and Microbiological Properties, 9, 831-871.
Anonymous. (1998). Test Methods for Evaluating Solid Waste, Physical Chemical Methods. Environmental Protection Agency, USEPA, Washington DC, USA.
Auffret, M. D., Yergeau, E., Labbé, D., Fayolle-Guichard, F., & Greer, C. W. (2015). Importance of Rhodococcus strains in a bacterial consortium degrading a mixture of hydrocarbons, gasoline, and diesel oil additives revealed by metatranscriptomic analysis. Applied Microbiology and Biotechnology, 99, 2419-2430.
Bastida, F., Jehmlich, N., Lima, K., Morris, B. E. L., Richnow, H. H., Hernández, T., Von Bergen, M., & García, C. (2016). The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment. Journal of Proteomics, 135, 162-169.
Chen, M., Xu, P., Zeng, G., Yang, C., Huang, D., & Zhang, J. (2015). Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnology Advances, 33(6), 745-755.
https://doi.org/10.1016/j.biotechadv.2015.05.003
Doustaki, M., Ebrahimi, S., Movahhedi Naiini, A., & Olamaii, M. (2013). Optimization of biodegradation of hydrocarbons conditions by endogenous and exogenous microorganisms. Journal of Water and Soil Conservation Research. 20 (4):165- 181. (In Persian with English abstract).
https://sanad.iau.ir/Journal/he/Article/848393
Etim, E. E. (2012). Phytoremediation and its mechanisms: a review. International Journal of Environment and Bioenergy, 2(3), 120-136.
Hasn Shahian, M., & Zeyd Abadi, Z. (2017). Study the effect of kerosene contamination on desert and farmland soil microbial community. Journal of Water and Soil Conservation, 24(4), 227-241. (In Persian with English abstract).
Hu, G., Li, J., & Zeng, G. (2013). Recent development in the treatment of oily sludge from petroleum industry: a review. Journal of Hazardous Materials, 261, 470-490.
Ganesh, A., & Lin, J. (2009). Diesel degradation and biosurfactant production by Gram-positive isolates. African Journal of Biotechnology, 8(21), 5847-5854.
Johnson, J. L., & Temple, K. L. (1964). Some variables affecting the measurement of “catalase activity” in soil. Soil Science Society of America Journal, 28(2), 207-209.
Li, J. L., & Chen, B. H. (2009). Surfactant-mediated biodegradation of polycyclic aromatic hydrocarbons. Materials, 2(1), 76-94.
Mao, J., Luo, Y., Teng, Y., & Li, Z. (2012). Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. International Biodeterioration & Biodegradation, 70, 141-147.
Margesin, R., Zimmerbauer, A., & Schinner, F. (2000). Monitoring of bioremediation by soil biological activities. Chemosphere, 40(4), 339-346.
Minai-Tehrani, D., Herfatmanesh, A., & Azari, D. F. (2006). Biodegradation of heavy crude oil in soil in a pilot scale. Environmental Science, 10: 71-81. (In Persian with English abstract).
https://envs.sbu.ac.ir/article_97026.html?lang=en
Tyagi, M., da Fonseca, M. M. R., & de Carvalho, C. C. (2011). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22, 231-241.
https://doi.org/10.1007/s10532-010-9394-4
Moreno, B., Nogales, R., Macci, C., Masciandaro, G., & Benitez, E. (2011). Microbial eco-physiological profiles to estimate the biological restoration of a trichloroethylene-contaminated soil. Ecological Indicators, 11(6), 1563-1571.
Mortazavi, B., Horel, A., Beazley, M. J., & Sobecky, P. A. (2013). Intrinsic rates of petroleum hydrocarbon biodegradation in Gulf of Mexico intertidal sandy sediments and its enhancement by organic substrates. Journal of Hazardous Materials, 244, 537-544.
Pedra, F., Polo, A., Ribeiro, A., & Domingues, H. (2007). Effects of municipal solid waste compost and sewage sludge on mineralization of soil organic matter. Soil biology and biochemistry, 39(6), 1375-1382.
Pessacq, J., Medina, R., Terada, C., Bianchini, F. E., Morelli, I. S., & Del Panno, M. T. (2015). Assessment of the responsiveness to different stresses of the microbial community from long-term hydrocarbon-contaminated soils. Water, Air, & Soil Pollution, 226, 1-13.
https://doi.org/10.1007/s11270-014-2262-9
Rao, M. A., Scelza, R., Acevedo, F., Diez, M. C., & Gianfreda, L. (2014). Enzymes as useful tools for environmental purposes. Chemosphere, 107, 145-162.
Roy, A. S., Baruah, R., Borah, M., Singh, A. K., Boruah, H. P. D., Saikia, N., Deka, M., Dutta, N., & Bora, T. C. (2014). Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study. International Biodeterioration & Biodegradation, 94, 79-89.
Rump, H.H., & Krist H. (1988). Laboratory Manual of the Examination of Water and Soil. VCH publishers. Escbborn. Germany.
Lee, S. H., Lee, S., Kim, D. Y., & Kim, J. G. (2007). Degradation characteristics of waste lubricants under different nutrient conditions. Journal of Hazardous Materials, 143(1-2), 65-72.
Shen, W., Zhu, N., Cui, J., Wang, H., Dang, Z., Wu, P., Luo, Y., & Shi, C. (2016). Ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation. Ecotoxicology and Environmental Safety, 124, 120-128.
Soldatkin, O. O., Kucherenko, I. S., Pyeshkova, V. M., Kukla, A. L., Jaffrezic-Renault, N., El'Skaya, A. V., Dzyadevych, S. V., & Soldatkin, A. P. (2012). Novel conductometric biosensor based on three-enzyme system for selective determination of heavy metal ions. Bioelectrochemistry, 83, 25-30.
Sun, M., Luo, Y., Christie, P., Jia, Z., Li, Z., & Teng, Y. (2012). Methyl-β-cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and associated microbial activity in contaminated soil. Journal of Environmental Sciences, 24(5), 926-933.
Tabatabai, M.A. (1994). Soil enzymes. Methods of Soil Analysis: Part 2 Microbiological and Biochemical Properties, 5, 775- 833.
Thapa, B., Kc, A. K., & Ghimire, A. (2012). A review on bioremediation of petroleum hydrocarbon contaminants in soil. Kathmandu University Journal of Science, Engineering and Technology, 8(1), 164-170.
Thavamani, P., Malik, S., Beer, M., Megharaj, M., & Naidu, R. (2012). Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals. Journal of Environmental Management, 99, 10-17.
Wu, J. H., Wu, F. Y., Chuang, H. P., Chen, W. Y., Huang, H. J., Chen, S. H., & Liu, W. T. (2013). Community and proteomic analysis of methanogenic consortia degrading terephthalate. Applied and Environmental Microbiology, 79(1), 105-112.
Yu, Z., Zeng, G. M., Chen, Y. N., Zhang, J. C., Yu, Y., Li, H., Liu, Z. F., & Tang, L. (2011). Effects of inoculation with Phanerochaete chrysosporium on remediation of pentachlorophenol-contaminated soil waste by composting. Process Biochemistry, 46(6), 1285-1291.