Abdoli, M. & Esfandiari, E. (2014). Effect of zinc foliar application on the quantitative and qualitative yield and seedlings growth characteristics of bread wheat (cv. Kohdasht).
Iranian Dryland Agronomy Journal,
3(1), 77-90. (In Persian with English abstract).
https://doi.org/10.22092/idaj.2014.100557
Alloway, B.J. (2008). Zinc in soils and crop nutrition (2th Ed.). Brussels: International zinc association (IZA), 136p. Brussels, Belgium and Paris, France.
Álvarez-Fernández, A., Orera, I., Abadía, J., & Abadía, A. (2007). Determination of synthetic ferric chelates used as fertilizers by liquid chromatography-electrospray/mass spectrometry in agricultural matrices.
Journal of the American Society for Mass Spectrometry, 18, 37–47.
https://doi.org/10.1016/j.jasms.2006.08.018
Arévalo, H. A. A., Rojas, E. M. M., Fonseca, K. B. B., & Mejía, S. M. V. (2022). Implementation of the HACCP system for production of
Tenebrio molitor larvae meal.
Food Control, 138, 109030.
https://doi.org/10.1016/j.foodcont.2022.109030
Askvik, K. M., Are Gundersen S., Sjöblom J., Merta J., & Stenius P. (1999). Complexation between lignosulfonates and cationic surfactants and its influence on emulsion and foam stability. Colloids Surf. A Physicochem. Eng. Asp. 159 89–101.
https://doi.org/10.1016/S0927-7757(99)00165-X
Bai, Y. (2015). Ecological functioning of bacterial chitinases in soil. Universiteit Leiden (dissertation)
Barragán-Fonseca, K. Y., Nurfikari, A., Van De Zande, E. M., Wantulla, M., Van Loon, J. J., De Boer, W., & Dicke, M. (2022). Insect frass and exuviae to promote plant growth and health.
Trends in Plant Science,
27(7), 646-654.
https://doi.org/10.1016/j.tplants.2022.01.007
Benedicto, A., Hernández-Apaolaza, L., Rivas, I., & Lucena, J. J. (2011). Determination of 67Zn distribution in navy bean (
Phaseolus vulgaris L.) after foliar application of
67Zn–lignosulfonates using isotope pattern deconvolution.
Journal of Agricultural and Food Chemistry,
59(16), 8829-8838.
https://doi.org/10.1021/jf2002574
Blakstad, J. I., Strimbeck, R., Poveda, J., Bones, A. M., & Kissen R. (2023). Frass from yellow mealworm (
Tenebrio molitor) as plant fertilizer and defense priming agent.
Biocatalysis and Agricultural Biotechnology,
53, 102862.
https://doi.org/10.1016/j.bcab.2023.102862
Febles C. I., Arias A., Hardisson A., Rodrıguez-Alvarez C., & Sierra A. (2002). Phytic acid level in wheat flours.
Journal of Cereal Science, 36(1), 19-23.
https://doi.org/10.1006/jcrs.2001.0441
Feiziasl , V., & Valizadeh, Gh. (2004). Effects of phosphorus and zinc fertilizer applications on nutrient concentrations in plant and grain yield in cv. Sardari "
Triticum aestivum" under dryland conditions.
Iranian Journal of Crop Sciences, 6(3), 223- 235. (In Persian with English abstract).
https://doi.org/20.1001.1.15625540.1383.6.3.5.4
Fescemyer, H. W., Sandoya, G. V., Gill, T. A., Ozkan, S., Marden, J. H., & Luthe, D. S. (2013). Maize toxin degrades peritrophic matrix proteins and stimulates compensatory transcriptome responses in fall armyworm midgut.
Insect Biochemistry and Molecular Biology, 43(3), 280-291.
https://doi.org/10.1016/j.ibmb.2012.12.008
Gargari, B. P., Mahboob, S., & Razavieh, S. V. (2007). Content of phytic acid and its mole ratio to zinc in flour and breads consumed in Tabriz, Iran.
Food Chemistry,
100(3), 1115-1119.
https://doi.org/10.1016/j.foodchem.2005.11.018
Gonzalez, D., Obrador, A., López Valdivia, L. M., & Álvarez, J. M. (2008). Effect of zinc source applied to soils on its availability to navy bean.
Soil Science Society of America Journal, 72, 641–649.
Https://doi.org/10.2136/sssaj2007.0099.
Haug, W., & Lantzsch, H. J. (1983). Sensitive method for the rapid determination of phytate in cereals and cereal products.
Journal of the Science of Food and Agriculture,
34(12), 1423-1426.
https://doi.org/10.1002/jsfa.2740341217
Houben, D., Daoulas, G., Faucon, M. P., & Dulaurent, A. M. (2020). Potential use of mealworm frass as a fertilizer: Impact on crop growth and soil properties.
Scientific Reports,
10(1), 4659.
https://doi.org/10.1038/s41598-020-61765-x
Ikkonen, E. N., & Jurkevich, M. G. (2021). Effect of lignosulfonate application to sandy soil on plant nutrition and physiological traits. In
IOP Conference Series: Earth and Environmental Science, 862(1), IOP Publishing.
https://doi.org/10.1088/1755-1315/862/1/012079
Jalilian, J., Khade, A., & Pirzad, A. (2014). Effect of Fe and Zn spraying on some characteristics of mungbean using chemical and organic fertilization.
Journal of Crops Improvement,
16(3), 725-732.
https://doi.org/10.22059/jci.2014.53272
Kalra, Y. (Ed.). (1997). Handbook of reference methods for plant analysis. CRC press.
Kaya, M., Küçükyumuk, Z. & Erdal, I. 2009. Phytase activity, phytic acid, zinc, phosphorus and protein contents in different chickpea genotypes in relation to nitrogen and zinc fertilization. African Journal of Biotechnology, 8, 4508-4513.
Li, M., Wang, S., Tian, X., Zhao, J., Li, H., Guo, C., Chen, Y. & Zhao, A. (2015). Zn distribution and bioavailability in whole grain and grain fractions of winter wheat as affected by applications of soil N and foliar Zn combined with N or P.
Journal of Cereal Science, 61, 26-32.
https://doi.org/10.1016/j.jcs.2014.09.009
Li, K., Xing, R., Liu, S., & Li, P. (2020). Chitin and chitosan fragments responsible for plant elicitor and growth stimulator. Journal of Agricultural and Food Chemistry, 68(44), 12203-12211.
https://doi.org/10.1021/acs.jafc.0c05316
Li, L., Zhao, Z., & Liu, H. (2013). Feasibility of feeding yellow mealworm (
Tenebrio molitor L.) in bioregenerative life support systems as a source of animal protein for humans.
Acta Astronautica,
92(1), 103-109.
https://doi.org/10.1016/j.actaastro.2012.03.012
Martin-Ortiz, D., Hernandez-Apaolaza, L., & Garate, A. (2009). Efficiency of a NPK fertilizer with adhered zinc lignosulfonate as a zinc source for maize (
Zea mays L.).
Journal of agricultural and food chemistry,
57(19), 9071-9078.
https://doi.org/10.1021/jf9017965
Mehdiniya Afra, J., & Manavi Amri, SS. (2015). The effects of interaction between the elements phosphorous and zinc are some traits of soybean cultivars of Sari. Iranian Journal of Dynamic Agriculture, 11(4), 309-315. (In Persian with English abstract).
Mikkelson, D., & Brandon, D. (1975). Zinc deficiency in California rice. California Agriculture, 29(9), 8-9.
Motalebifard, R. (2017). Effects of Zinc and
phosphorus Levels on Yield, Nutrients Uptake and Zinc Recovery and Agronomic Efficiency in Potato. Journal of Water and Soil, 31(3), 886-899. (In Persian with English abstract).
https://doi.org/10.22067/JSW.V31I3.54513
Nyanzira, A., Machona, O., Matongorere, M., Chidzwondo, F., & Mangoyi, R. (2023). Analysis of frass excreted by
Tenebrio molitor for use as fertilizer.
Entomology and Applied Science Letters,
10(1-2023), 29-37.
https://doi.org/10.51847/xBw1ooFqXN
Parzivand, A., Ghooshchi, F., Momayezi, M.R., & Tohidi Moghaddam, H.R. (2011). Effects of zinc spraying and nitrogen fertilizer on yield and some seed qualitative traits of wheat under drought stress conditions.
Journal of Crop Production Research (
Environmental Stresses in Plant Aciences), 3(1), 55-69. (In Persian with English abstract).
https://sid.ir/paper/182247/en
Poveda, J., Jiménez-Gómez, A., Saati-Santamaría, Z., Usategui-Martín, R., Rivas, R., & García-Fraile, P. (2019). Mealworm frass as a potential biofertilizer and abiotic stress tolerance-inductor in plants.
Applied Soil Ecology, 142, 110-122
https://doi.org/10.1016/j.apsoil.2019.04.016
Rodella, A. A., & Chiou, D. G. (2009). Copper, zinc, and manganese mobilization in a soil contaminated by a metallurgy waste used as micronutrient source. Communications in soil science and plant analysis, 40(9-10), 1634-1644.
https://doi.org/10.1080/00103620902831941
Rumbos, C. I., Karapanagiotidis, I. T., Mente, E., Psofakis, P., & Athanassiou, C. G. (2020). Evaluation of various commodities for the development of the yellow mealworm,
Tenebrio molitor.
Scientific Reports, 10(1), 11224.
https://doi.org/10.1038/s41598-020-67363-1
Ryan, M. H., McInerney, J. K., Record, I. R., & Angus, J. F. (2008). Zinc bioavailability in wheat grain in relation to phosphorus fertiliser, crop sequence and mycorrhizal fungi.
Journal of the Science of Food and Agriculture,
88(7), 1208-1216.
https://doi.org/10.1002/jsfa.3200
Sánchez Jiménez, S., & Lucena, J. J. (2015). Characterization of zinc fertilizers. Adjustment to the European and Spanish regulations (in Spanish). Phytoma, 272, 47–52.
Shoormij, F., Mirlohi, A., Saeidi, G., Kadivar, M., & Shirvani, M. (2023). Wheat grain quality changes with water stress, zinc, and iron applications predicted by the solvent retention capacity (SRC).
Journal of Cereal Science, 111, 103665.
https://doi.org/10.1016/j.jcs.2023.103665
Verardi, A., Sangiorgio, P., Della Mura, B., Moliterni, S., Spagnoletta, A., Dimatteo, S., & Errico, S. (2025).
Tenebrio molitor Frass: A Cutting-Edge Biofertilizer for Sustainable Agriculture and Advanced Adsorbent Precursor for Environmental Remediation.
Agronomy,
15(3), 758.
https://doi.org/10.3390/agronomy15030758
Vitosh, M. L., Warncke, D. D., & Lucas, R. E. (1994). Secondary and Micronutrients for Vegetable and Field Crops. Extension Bulletin E-486, Michigan State University Extension Service, 18 p.
Weaver, C. M., & Kannan, S. (2001). Phytate and mineral bioavailability. pp. 227-240. In: Food phytates. CRC Press.
Welch R. M., & Graham R. D. (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective.
Journal of Experimental Botany, 55(396), 353-364.
https://doi.org/10.1093/jxb/erh064
World Health Organization. (1996). Trace elements in human nutrition and health. WHO Library Cataloguing in Publication Data, 105-122.
Zahedifar, M., Karimian, N., Ronaghi, A., Yasrebi, J. and Emam, Y. (2011). Phosphorus and Zinc Distribution in Different Parts and Various Growth Stages of Wheat under Field Conditions.
Water and Soil,
25(3).
https://doi.org/10.22067/jsw.v0i0.9624
Zhang, B., Gu, L., Dai, M., Bao, X., Sun, Q., Qu, X., & Zhen, W. (2024). Estimation of grain filling rate and thousand-grain weight of winter wheat (
Triticum aestivum L.) using UAV-based multispectral images.
European Journal of Agronomy,
159, 127258.
https://doi.org/10.1016/j.jclepro.2024.142608
Zim, J., Aitikkou, A., EL Omari, M. H., EL Malahi, S., Azim, K., Hirich, A., & Oumouloud, A. (2022). A new organic amendment based on insect frass for zucchini (
Cucurbita pepo L.) cultivation.
Environmental Sciences Proceedings, 16(1), 28, 1-4.
https://doi.org/10.3390/environsciproc2022016028
Zunzunegui, I., Martín-García, J., Santamaría, Ó. & Poveda, J. (2024). Analysis of yellow mealworm (
Tenebrio molitor) frass as a resource for a sustainable agriculture in the current context of insect farming industry growth.
Journal of Cleaner Production,
460, 142608.
https://doi.org/10.1016/j.jclepro.2024.142608